108 research outputs found

    Epigenomic regulation of heart failure: integrating histone marks, long noncoding RNAs, and chromatin architecture [version 1; referees: 2 approved]

    Get PDF
    Epigenetic processes are known to have powerful roles in organ development across biology. It has recently been found that some of the chromatin modulatory machinery essential for proper development plays a previously unappreciated role in the pathogenesis of cardiac disease in adults. Investigations using genetic and pharmacologic gain- and loss-of-function approaches have interrogated the function of distinct epigenetic regulators, while the increased deployment of the suite of next-generation sequencing technologies have fundamentally altered our understanding of the genomic targets of these chromatin modifiers. Here, we review recent developments in basic and translational research that have provided tantalizing clues that may be used to unlock the therapeutic potential of the epigenome in heart failure. Additionally, we provide a hypothesis to explain how signal-induced crosstalk between histone tail modifications and long non-coding RNAs triggers chromatin architectural remodeling and culminates in cardiac hypertrophy and fibrosis

    BRD4 inhibition for the treatment of pathological organ fibrosis [version 1; referees: 2 approved]

    Get PDF
    Fibrosis is defined as excess deposition of extracellular matrix, resulting in tissue scarring and organ dysfunction. It is estimated that 45% of deaths in the developed world are due to fibrosis-induced organ failure. Despite the well-accepted role of fibrosis in the pathogenesis of numerous diseases, there are only two US Food and Drug Administration–approved anti-fibrotic therapies, both of which are currently restricted to the treatment of pulmonary fibrosis. Thus, organ fibrosis represents a massive unmet medical need. Here, we review recent findings suggesting that an epigenetic regulatory protein, BRD4, is a nodal effector of organ fibrosis, and we highlight the potential of small-molecule BRD4 inhibitors for the treatment of diverse fibrotic diseases

    Histone deacetylases: molecular mechanisms and therapeutic implications for muscular dystrophies

    Get PDF
    Histone deacetylases (HDACs) are enzymes that regulate the deacetylation of numerous histone and non-histone proteins, thereby affecting a wide range of cellular processes. Deregulation of HDAC expression or activity is often associated with several pathologies, suggesting potential for targeting these enzymes for therapeutic purposes. For example, HDAC expression and activity are higher in dystrophic skeletal muscles. General pharmacological blockade of HDACs, by means of pan-HDAC inhibitors (HDACi), ameliorates both muscle histological abnormalities and function in preclinical studies. A phase II clinical trial of the pan-HDACi givinostat revealed partial histological improvement and functional recovery of Duchenne Muscular Dystrophy (DMD) muscles; results of an ongoing phase III clinical trial that is assessing the long-term safety and efficacy of givinostat in DMD patients are pending. Here we review the current knowledge about the HDAC functions in distinct cell types in skeletal muscle, identified by genetic and -omic approaches. We describe the signaling events that are affected by HDACs and contribute to muscular dystrophy pathogenesis by altering muscle regeneration and/or repair processes. Reviewing recent insights into HDAC cellular functions in dystrophic muscles provides new perspectives for the development of more effective therapeutic approaches based on drugs that target these critical enzymes

    Promiscuous actions of small molecule inhibitors of the protein kinase D-class IIa HDAC axis in striated muscle

    Get PDF
    AbstractPKD-mediated phosphorylation of class IIa HDACs frees the MEF2 transcription factor to activate genes that govern muscle differentiation and growth. Studies of the regulation and function of this signaling axis have involved MC1568 and Gö-6976, which are small molecule inhibitors of class IIa HDAC and PKD catalytic activity, respectively. We describe unanticipated effects of these compounds. MC1568 failed to inhibit class IIa HDAC catalytic activity in vitro, and exerted divergent effects on skeletal muscle differentiation compared to a bona fide inhibitor of these HDACs. In cardiomyocytes, Gö-6976 triggered calcium signaling and activated stress-inducible kinases. Based on these findings, caution is warranted when employing MC1568 and Gö-6976 as pharmacological tool compounds to assess functions of class IIa HDACs and PKD

    Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy.

    Get PDF
    BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies

    Reversible lysine fatty acylation of an anchoring protein mediates adipocyte adrenergic signaling.

    Get PDF
    N-myristoylation on glycine is an irreversible modification that has long been recognized to govern protein localization and function. In contrast, the biological roles of lysine myristoylation remain ill-defined. We demonstrate that the cytoplasmic scaffolding protein, gravin-α/A kinase–anchoring protein 12, is myristoylated on two lysine residues embedded in its carboxyl-terminal protein kinase A (PKA) binding domain. Histone deacetylase 11 (HDAC11) docks to an adjacent region of gravin-α and demyristoylates these sites. In brown and white adipocytes, lysine myristoylation of gravin-α is required for signaling via β(2)- and β(3)-adrenergic receptors (β-ARs), which are G protein–coupled receptors (GPCRs). Lysine myristoylation of gravin-α drives β-ARs to lipid raft membrane microdomains, which results in PKA activation and downstream signaling that culminates in protective thermogenic gene expression. These findings define reversible lysine myristoylation as a mechanism for controlling GPCR signaling and highlight the potential of inhibiting HDAC11 to manipulate adipocyte phenotypes for therapeutic purposes

    DUSP5-mediated inhibition of smooth muscle cell proliferation suppresses pulmonary hypertension and right ventricular hypertrophy

    Get PDF
    Pulmonary hypertension (PH) is associated with structural remodeling of pulmonary arteries (PAs) because of excessive proliferation of fibroblasts, endothelial cells, and smooth muscle cells (SMCs). The peptide hormone angiotensin II (ANG II) contributes to pulmonary vascular remodeling, in part, through its ability to trigger extracellular signal-regulated kinase (ERK1/2) activation. Here, we demonstrate that the ERK1/2 phosphatase, dual-specificity phosphatase 5 (DUSP5), functions as a negative regulator of ANG II-mediated SMC proliferation and PH. In contrast to wild-type controls, Dusp5 null mice infused with ANG II developed PH and right ventricular (RV) hypertrophy. PH in Dusp5 null mice was associated with thickening of the medial layer of small PAs, suggesting an in vivo role for DUSP5 as a negative regulator of ANG II-dependent SMC proliferation. Consistent with this, overexpression of DUSP5 blocked ANG II-mediated proliferation of cultured human pulmonary artery SMCs (hPASMCs) derived from patients with idiopathic PH or from failed donor controls. Collectively, the data support a role for DUSP5 as a feedback inhibitor of ANG II-mediated ERK signaling and PASMC proliferation and suggest that disruption of this circuit leads to adverse cardiopulmonary remodeling. NEW & NOTEWORTHY Dual-specificity phosphatases (DUSPs) serve critical roles in the regulation of mitogen-activated protein kinases, but their functions in the cardiovascular system remain poorly defined. Here, we provide evidence that DUSP5, which resides in the nucleus and specifically dephosphorylates extracellular signal-regulated kinase (ERK1/2), blocks pulmonary vascular smooth muscle cell proliferation. In response to angiotensin II infusion, mice lacking DUSP5 develop pulmonary hypertension and right ventricular cardiac hypertrophy. These findings illustrate DUSP5-mediated suppression of ERK signaling in the lungs as a protective mechanism
    • …
    corecore